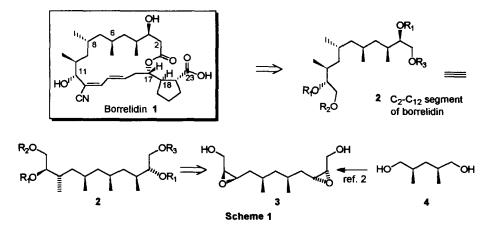


PII: S0040-4039(97)01372-5

Studies Towards Total Synthesis of Borrelidin, Regioselective Methylation of Bisepoxides and Structure Determination


Nizar Haddad*, Ashraf Brik and Michael Grishko

Department of Chemistry, Technion-Israel Institute of Technology, Haifa 32000, Israel.

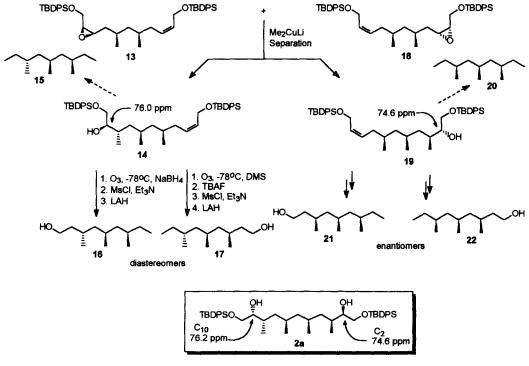
Abstract: Regioselective methylation of bis-epoxides 9 were examined. Two examples of high regioselectivity and yield were achieved. Structure determination of the four possible regioisomers provide useful information for structure determination of structurally related flexible molecules. © 1997 Elsevier Science Ltd.

As part of our studies towards a total synthesis of borrelidin (1), and interest in studying the relation between relative configuration of polysubstituted alkanes and the conformational distribution of such "flexible molecules with defined shape", ¹ we have developed a versatile and highly stereoselective approach for the synthesis of (2) (C_2 - C_{12} segment of borrelidin) and related isomers.² The synthesis based on enantioselective preparation of bis-epoxide 3 (>99.2 %ee, 29% total yield of five steps starting from meso-diol 4), followed by regioselective methylation of the bis-epoxide.²

Regioselective alkylation of *threo*-epoxides, derived from *E*-allylic alcohols, that produce 1,2-diols, is a well documented reaction³. However, the regioselectivity and yields of these reactions could be strongly decreased⁴ when applied in the alkylation of *erythro*-epoxy alcohols. Regioselective addition of methyl substituents to the bis-epoxide **3**, structure determination of the four possible regioisomers and convenient method for the determination of C_1 and C_{11} positions in **2** and its related regioisomers are presented.

Four diastereomers should be obtained *via* unselective alkylation of bis-epoxide **3**. However, regioselective methylation at C₃ and C₉ positions is required for the synthesis of borrelidin. Treatment of **3** with Me₃Al resulted in a sluggish transformation⁴ to unidentified mixture of products. Partial selectivity was obtained upon treatment of the protected bis-epoxide **9a** (R=TBDPS) with Me₂CuLi⁵ (entry 2). Four diastereomers **2a**, **10a**, **11a** and **12a** obtained in this reaction in 40:25:25:10 ratio respectively. Similar selectivity, however, lower yield, obtained upon treatment of **9a** with Me₂Cu(CN)Li₂ (entry 3) as methylating reagent.⁵ The isomeric products were *easily* separated by flash chromatography (R_f(Hexane:EtOAc, 4:1) = 0.55, 0.50, 0.45, 0.40 respectively). Structure determination of the desired product **2a** was achieved as follows: Compounds **10a** and **11a** are expected to be formed in a similar ratio in the case of similar regioselectivity on both sides of the bisepoxide. ¹H-NMR of these compounds shows similarity in two signals at 3.95 and 3.5-3.7 ppm in the ratio of 1H:5H respectively. ¹H-NMR of the major product **2a** shows one signal at 3.5-3.7 ppm integrated to 6H whereas the minor isomer **12a** shows two signals at 3.95 and 3.5-3.7 ppm in the ratio of 2H:4H respectively. The major product **2a** was easily distinguished from isomer **12a** by characteristic cross peaks of the methylene protons of C₁ and C₁₁ with the downfield vicinal protons at C₂ and C₁₀ respectively in the 2D-Cosy spectrum, no such cross peaks were obtained in the 2D-Cosy of **12a**.

Scheme 2	
----------	--


			1 .*	~ •••	
'l ahla	۰.	Meth	vlation	of hig_c	poxides 9.
IAVIC		IVICUI	viation	01 013-0	$\nu \nu \nu \lambda u \nu \sigma P$.

Entry	R	Methylating Reagent	Reaction Conditions	Total Yield	Regioselectivity 2:10:11:12
1	Н	AlMe ₃	CH ₂ Cl ₂ , 0°C	ca. 20%	undefined mixture
2	TBDPS	Me ₂ CuLi	Et ₂ O, -23°C	60%	40 : 25 : 25: 10
3	TBDPS	Me ₂ Cu(CN)Li ₂	Et ₂ O, -23-0°C	40%	40 : 25 : 25: 10
4	TBDMS	Me ₂ CuLi	Et ₂ O, -23°C	~60%	10 : 25 : 25: 40
5	TBDPS	LiAlMe ₄	Hexane/Et ₂ O, rt	no reaction	
6	TBDMS	LiAlMe ₄	Hexane/Et ₂ O, reflux, 12h	78%	88:6:6:0
7	Bn	LiAlMe ₄	Hexane/Et ₂ O, reflux, 12h	80%	87:7:7:0

Decreasing the steric hindrance of the protecting silvl ethers (9b) (entry 4) resulted in converting the regioselectivity. On the other hand, treatment of epoxide 9a with LiMe₄Al⁶ (entry 5) resulted in no reaction under the examined conditions, presumably due to steric hindrance of the silvl groups. However, replacement

of the TBDPS-protection with TBDMS-protection (entry 6) afforded the desired product **2b** in high selectivity and 69% isolated yield. Similar selectivity was obtained in entry 7, using benzyl ethers as protecting groups (BnI, NaH)⁷ at the bis-epoxide **9c** and LiMe₄Al as methylation reagent.

At this stage, it is important to distinguish between the C_1 and C_{11} sides in the desired isomer 2a, necessary to determine the position of monoprotection at one of the primary alcohols, required for the synthesis of borrelidin. The ¹³C-NMR chemical shifts⁸ of the secondary alcohols in the desired products 2 (76.1 and 74.6 ppm) are more downfield than for the undesired product 12a (71.5 and 71.6 ppm). The ¹³C-chemical shifts kept constant in 2a and 2b. Based on this, we have developed the following test to distinguish between C_2 and C_{10} in the desired isomer 2a. Monoepoxides 13 and 18 were prepared by partial asymmetric epoxidation, methylation of the monoepoxides afforded alcohols 14 and 19 which were separated (ptlc: EtOAc:Hexane, 1:30 respectively). The alcohol fraction that possesses the 76.2 ppm signal in its ¹³C-NMR spectrum⁸ was transformed *via* two different sequences (scheme 3) to afford the diastereomeric products 16 and 17 in ca. 50% total yield, ⁹ indicating the stereochemistry of alcohol 14. Following the same transformations on the second alcohol fraction that possesses the 74.6 ppm signal in its ¹³C-NMR spectrum, afforded two enantiomers 21 and 22 which must be formed from 19. Based on these results we attribute the signal which appears at 74.6 ppm in the ¹³C-NMR spectrum of 2a to C₂ and that at 76.2 ppm to C₁₀ and distinguish between the isomeric structures of 10a (74.5 ppm) and 11a (76.2 ppm).⁸

Scheme 3

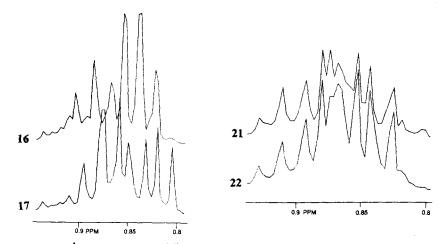


Figure 1: Selected ¹H-NMR spectra of diastereomers 16 and 17 and enantiomers 21 and 22.

In summary, high regioselectivity achieved in the methylation of bis-epoxides 2 and structure determination of the four possible regioisomers provide versatile and enantioselective synthesis of a large number of related diastereomers of types 2, 10-12.

Acknowledgment

This research was supported by grant No. 95-00222 from the United States-Israel Binational Science Foundation (BSF), Jerusalem, Israel.

References and Notes

- # Presented in part at the 60th Annual Meeting of the Israel Chemical Society, February 1996, 108.
- (a) Gottlich, R.; Facke, T.; Rolle, U.; Hoffmann, R. W. J. Chem. Soc., Perkin Ttrans. 2, 1966, 2059; (b) Hoffmann, R. W. Angew. Chem. Int. Ed. Engl. 1992, 31, 1124; (c) Somers, P. K.; Wandless, T. J.; Schreiber, S. L. J. Am. Chem. Soc. 1991, 113, 8045; (d) Smith, P. W.; Still, C. J. Am. Chem. Soc. 1988, 110, 7917; (e)Mori, K.; Kuwahara, S. Tetrahedron 1986, 42, 5539; (f) Mori, K.; Kuwahara, S. Tetrahedron 1986, 42, 5545.
- 2. Haddad, N.; Ashraf, B.; Grishko, M. Tetrahedron Lett., accepted for publication.
- (a) Hanson, R. Chem. Rev. 1991, 91, 437; (b) Behrens, C. H.; Sharpless, K. B. J. Org. Chem. 1985, 50, 5696; (c) Sharpless, K. B.; Behrens, C. H.; Katsuki, T.; Lee, A. W. M.; Martin, V. S.; Takatani, M.; Viti, S. M.; Walker, F. J.; Woodard, S. S. Pure & Appl. Chem. 1983, 55, 589.
- (a) Suzuki, T.; Saimoto, H.; Tomioka, H.; Oshima, K.; Nozaki, H. Tetrahedron Lett. 1982, 23, 3597; (b) Matthews, R. S.; Mihelich, E. D.; McGowan, L. S.; Daniels, K. J. Org. Chem. 1983, 48, 409; (c) Pfaltz, A.; Mattenberger, A. Angew. Chem. Int. Ed. Engl. 1982, 21, 71.
- 5. Chong, J. M.; Cyr, D. R.; Mar, E. K. Tetrahedron Lett. 1987, 28, 5009.
- 6. Inghardt, T.; Frejd, T.; Magnusson, G. J. Org. Chem. 1988, 53, 4542.
- 7. Tamelen, E. E.; Zawacky, S. R.; Russel, R. K.; Carlson, J. G. J. Am. Chem. Soc. 1983, 105, 142.
- ¹³C-NMR (JMOD-XH, CDCl₃) of: diol 2: (-) 135.5, (+) 133.2, (-) 129.8, (-) 127.7, (-) 76.1, (-) 74.6, (+) 66.5, (+) 66.2, (+) 45.6, (+) 41.2, (+) 39.7, (-) 32.7, (-) 32.3, (-) 27.1, (-) 27.1, (-) 26.7, (-) 20.7, (-) 20.1, (+) 19.3, (-) 14.8, (-) 14.1; diol 10: (-) 135.7, (-) 135.6, (-) 129.8, (-) 127.7, (-) 74.5, (-) 72.1, (+) 68.5, (+) 66.5, (+) 45.2, (+) 41.4, (+) 41.0, (-) 38.8, (-) 32.4, (-) 27.6, (-) 27.4, (-) 26.9, (-) 21.3, (-) 21.0, (+) 20.3, (-) 14.9, (-) 10.6; diol 11: (-) 135.7, (-) 135.6, (+) 133.7, (-) 129.8, (-) 127.8, (-) 76.2, (-) 71.4, (+) 68.4, (+) 66.3, (+) 47.0, (+) 41.5, (+) 40.2, (-) 40.2, (-) 32.8, (-) 27.1, (-) 26.9, (-) 26.5, (-) 19.6, (-) 19.3, (+) 19.2, (-) 14.2, (-) 10.7; diol 12: (-) 135.6, (-) 135.5, (-) 129.8, (-) 129.7, (+) 127.7, (-) 127.7, (-) 71.6, (-) 71.5, (+) 68.5, (+) 68.3, (+) 45.9, (+) 41.7, (+) 41.0, (-) 40.2, (-) 39.0, (-) 27.2, (-) 26.7, (-) 20.9, (-) 20.3, (+) 19.3, (-) 10.8, (-) 10.0; alcohol 14: (-) 135.5, (+) 133.1, (-) 129.8, (-) 129.5, (-) 127.7, (-) 127.6, (-) 76.0, (+) 66.1, (+) 60.4, (+) 45.5, (+) 39.9, (+) 34.8, (-) 32.6, (-) 30.3, (-) 27.1, (-) 26.9, (-) 19.8, (-) 19.7, (+) 19.3, (-) 10.3, (20.9, 10.9; 133.2, 130.0, 129.8, 129.5, 127.7, 127.6, 74.6, 66.4, 60.4, 44.2, 41.0, 34.1, 32.3, 30.5, 27.4, 26.8, 20.9, 20.9, 19.3, 14.9.
- 9. This experiment was favored over the alternative formation of chiral 15 from 13 and meso 20 from 18 based on the expected small α_D value of these compounds as it was found in diols 2, 10, 11 and 12.

(Received in UK 27 May 1997; revised 1 July 1997; accepted 4 July 1997)